翻訳と辞書 ・ Stirling Punch ・ Stirling radioisotope generator ・ Stirling railway station ・ Stirling railway station, Perth ・ Stirling railway station, Scotland ・ Stirling Range ・ Stirling Range National Park ・ Stirling School ・ Stirling services ・ Stirling Sill ・ Stirling Silliphant ・ Stirling Smith Museum and Art Gallery ・ Stirling Terrace, Toodyay ・ Stirling Theological College ・ Stirling torcs ・ Stirling transform ・ Stirling Transmitting Station ・ Stirling University Boat Club ・ Stirling University F.C. ・ Stirling University RFC ・ Stirling's approximation ・ Stirling, Alberta ・ Stirling, Australia ・ Stirling, Australian Capital Territory ・ Stirling, New Jersey ・ Stirling, New Zealand ・ Stirling, South Australia ・ Stirling, Western Australia ・ Stirling-Alloa-Kincardine rail link ・ Stirling-Hamilton baronets
|
|
Stirling transform : ウィキペディア英語版 | Stirling transform In combinatorial mathematics, the Stirling transform of a sequence of numbers is the sequence given by : where is the Stirling number of the second kind, also denoted ''S''(''n'',''k'') (with a capital ''S''), which is the number of partitions of a set of size ''n'' into ''k'' parts. The inverse transform is : where ''s''(''n'',''k'') (with a lower-case ''s'') is a Stirling number of the first kind. Berstein and Sloane (cited below) state "If ''a''''n'' is the number of objects in some class with points labeled 1, 2, ..., ''n'' (with all labels distinct, i.e. ordinary labeled structures), then ''b''''n'' is the number of objects with points labeled 1, 2, ..., ''n'' (with repetitions allowed)." If : is a formal power series (note that the lower bound of summation is 1, not 0), and : with ''a''''n'' and ''b''''n'' as above, then : ==See also==
* Binomial transform * List of factorial and binomial topics
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Stirling transform」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|